
Nemo: an Agent-Oriented Software Engineering Methodology

Marc-Philippe Huget
Agent ART Group

Department of Computer Science
University of Liverpool

Liverpool L69 7ZF
United Kingdom

M.P.Huget@csc.liv.ac.uk

Abstract

The development of multiagent systems is increasing sig-
nificantly. Thus, multiagent system designers need method-
ologies and tools to help them. Recent years have seen
an incredible development of agent-oriented software en-
gineering methodologies trying to cover all the range of
features that agents and agent-based systems encompass.
These methodologies are either based on object-oriented
methodologies or specific to agent theory. The Nemo
methodology is a new agent-oriented methodology. Its main
advantage is to tackle notions such as mobility, security
or open large scale multiagent systems. These notions are
more or less not yet considered in agent-oriented method-
ologies. This paper presents the Nemo methodology and its
eight models describing organizations, plans, roles, inter-
actions, knowledge or agents.

1. Introduction

Recently, the development of multiagent systems is in-
creasing significantly, particularly in the domain of elec-
tronic commerce and business [32]. At the same time, de-
signing multiagent systems becomes more and more com-
plex. It is no longer possible to consider designing agents
and agent-based systems without some help. This help is
provided by methodologies and tools.

A commonly-held idea is to consider agents and objects
as equivalent notions. This view is too restrictive to show
all the richness of agents. As Odell [36] and Wooldridge
[45] note it, even if agents and objects have some points
in common, many differences exist between these two ap-
proaches. The main differences are autonomy and interac-
tion. Actually, agents are autonomous, reactive, proactive
and intelligent. Agents are capable of initiating action in-

dependent of any other entity. Autonomy for agents means
that agents are able to react to events occurring in the en-
vironment. Proactive agents will actually poll the environ-
ment for events and other messages to determine what ac-
tion they should take. They are not triggered by other agents
or by humans. Finally, interaction between agents is richer
than the one in object-oriented systems and also more ab-
stract through high-level messages. Interaction in object-
oriented systems corresponds to method calls. Interaction
between agents is completely different. Messages between
objects are simpler since it is only possible to invoke meth-
ods and give parameters. These parameters are fixed and
if designers want different kinds of parameters, they have
to provide as much methods as they have different kinds.
Agents use agent communication languages such as KQML
[14] or FIPA’s ACL [15] to exchange messages. The aim
of agent communication languages is to provide a precise
syntax and semantics for interaction between agents.

Several other areas where agents and objects differ in-
clude scheduling, learning, adaptivity, multiple and dy-
namic classification or the emergence. As soon as agents
have goals, they derive plans to fulfill them. By learning and
adaptivity, we mean that agents have the ability to modify
their behaviors given events occurring in the environment,
or to acquire new behaviors based on their observation of
other agents or of the environment. Multiple and dynamic
classification refer to the ability for agents to have different
roles during an execution and to move from one role to an-
other one during it. Emergence within multiagent systems
means that an overall behavior emerges from the interac-
tions between agents [35]. We let readers consult [36] [46]
for further details and other differences.

Due to the richness and the complexity of agents and
agent-based systems, existing software development tech-
niques (for example, object-oriented analysis and design
[31]) are unsuitable to develop agent and agent-based sys-
tems. Two main directions have been considered by mul-



tiagent system designers: extending software engineering
(or knowledge engineering) methodologies or defining spe-
cific agent methodologies. Recent years have seen an in-
credible development of agent-oriented software engineer-
ing methodologies trying to cover all the range of features
that agents and agent-based systems encompass. Readers
are urge to read the helpful survey from Iglesias et al. to
this purpose [25]. Even if it does not contain most re-
cent methodologies, it presents a good overview of agent-
oriented methodologies. Most cited or recent methodolo-
gies are MESSAGE [5], Tropos [33], PASSI [4], MASSIVE
[28], Gaia [46], MaSE [8], DESIRE [3], AALAADIN [12],
CASSIOPEIA [6], VOWELS [9], Prometheus [39], MAS-
CommonKADS [24] and CoMoMAS [17].

There are two options when designers do not find their
needs in current methodologies: (1) update a methodology
or (2) define a new one. The former is the fastest one since
designers “just” have to enhance a methodology. However,
this approach is painful if (1) the new needs are difficult to
include in the methodology and (2) the methodology allows
few improvements due to its lack of flexibility. Updating a
methodology is the approach followed by Juan et al. in [26]
where they extend Gaia.

This paper addresses the latter option: the definition of
a new methodology called Nemo. The main benefit to de-
fine a new methodology is that designers are sure to find a
methodology perfectly tailored to their needs. The work is
certainly more considerable than updating a methodology
but it is easier to keep it easily updated.

The Nemo methodology has two main features that dis-
tinguishes it from other ones: (1) mobility and security
management and (2) open large scale multiagent system
management. Actually, most of the methodologies afore-
mentioned only consider reactive and cognitive agents. The
Nemo methodology focuses on the analysis and design
stages and provides eight models representing organization,
interaction, agents or tasks.

The Nemo methodology addresses a wide range of mul-
tiagent systems. Multiagent systems can be open (with a
large number of agents) or closed, agents can be reactive,
cognitive or rational. They can be homogeneous or hetero-
geneous. Finally, agents can be mobile.

The Nemo methodology is a new methodology and is
still ongoing research. As a consequence models should be
refined in a near future. The paper focuses on the different
models and not on a particular application of this method-
ology.

The paper is organized as follows. Section 2 describes an
overview of the Nemo methodology. We present briefly the
meaning of the eight models. Section 3 presents the models
in detail. Section 4 compares this methodology with others.
Section 5 concludes the paper and gives future directions.

2. The Nemo Methodology

The Nemo methodology is an agent-oriented software
engineering methodology. It addresses the analysis and de-
sign stages. The main benefits of Nemo in comparison with
other methodologies is to take into consideration the agent
mobility and the security attached to this mobility. More-
over, the notion of open large scale multiagent systems is
addressed in Nemo.

The development of multiagent systems is performed
through eight models (mobility and security are not defined
as specific models but are included in the other models):

Organization model This model shows the organizational
structures within multiagent systems. Organizations
in the context of multiagent systems correspond to
groups having a particular structure and specific rules.
Since organizations can be open large scale multiagent
systems, several new attributes are included with the
usual ones (agents’ roles, services and roles’ relation-
ships), such as roles’ cardinality, procedures for enter-
ing and leaving, norms, functioning costs, and proce-
dures for splitting or merging organizations or organi-
zation knowledge.

Plan model This model depicts the different plans used
within multiagent systems. A plan is composed of
tasks which correspond to actions done by agents.
These tasks are organized as trees. The plan model
contains conditions required to perform the plan,
agents involved in this plan and plan substitutes. A
task is described as a procedure to complete it as well
as the conditions under which it is performed.

Interaction model This model depicts the interaction be-
tween agents. These interactions are performed
through protocols. The interaction model is decom-
posed into two parts. The requirement analysis doc-
ument of the protocol is done in the first part. The
second part describes a graphical representation of the
protocol. It represents the sequence of messages for
this interaction. Nemo uses Agent UML sequence dia-
grams [37] to this purpose. Security is a major problem
in the context of interaction. This problem is addressed
in the interaction model.

Environment model The environment model is particu-
larly important for reactive agents which evolve in an
environment. The environment model shows the en-
vironment structure and the different entities (agents,
resources) belonging to it. If multiagent systems are
open, it is possible to add some rules to prevent agents
from consuming all the resources. A second use of
these rules is to secure the multiagent systems from
malicious agents.



Role model This model depicts the different roles, their re-
lationships and how roles are organized into groups.
These groups are different from the ones defined in the
organization model. They are only used to represent
the permissions, authorizations on knowledge and ac-
tions. A role belongs to a group and as a consequence
has some permissions. The description of a role fol-
lows Gaia’s approach [46].

Agent model This model shows the entities (the agents, the
objects (usually the resources)) and the relationships
between entities. This model is based on Agent UML
class diagrams [22] and is extended with notions such
as mobility and knowledge privacy.

Knowledge model Knowledge is one of the main differ-
ences between agents and objects. Agents encompass
beliefs, desires, intentions and knowledge about their
users, other agents and the environment. The knowl-
edge model is similar to the one found in [7] except the
notion of data privacy.

Deployment model Even if it is stated in introduction that
the Nemo methodology focuses on the analysis and de-
sign stages, it is important to propose a deployment
model at this level of design like in UML [2]. It is
particularly important to have this model in the con-
text of mobility and security. This deployment model
describes how entities (agents, resources and software)
are spread on the different machines. This deployment
model is based on the UML deployment diagrams and
is extended to cover the notion of mobility and security
management.

3. Nemo’s Models

The Nemo methodology is composed of eight models.
Developing a multiagent system with the Nemo method-
ology consists in filling these models or a subset of these
models. The design can be iterative and the models can be
fulfilled in any orders. For instance, if the organization is
the main aspect in a multiagent system, designers should
begin with this one. The Nemo methodology follows the
idea of abstraction in UML: all the models are not required
and even in a model, it is not required to fulfill all the infor-
mation. It depends on the targeted multiagent system. The
security in each model does not have to be provided if it has
no sense for the developed multiagent system.

3.1. Organization Model

Agents within multiagent systems are gathered into
groups similar to human ones such as manufacturing cells,
organizations, or markets [16]. We consider organizations

services

op
en

clo
se

d

cardinalityroles

procedure for entering

procedure for leaving

costs

norms constraints on resources

protocolsACL

ontology

rules for competition
rules for coordination

relationships between roles

relationships with other organizations

organization knowledge

organization name

procedure for merging

procedure for splitting

spokesman

security management

Figure 1. Organization Model Schema

to be a subtype of group. Here, an organization is defined as
a group whose roles and interactions are typically expected
to be relatively stable and change slowly over time [40].

In the MESSAGE methodology, organizations are de-
scribed through organization diagrams [5]. These diagrams
contain information about the different roles involved in this
organization and the cardinality for each roles. This ap-
proach is too restrictive in comparison with the richness of
multiagent societies or human societies. To this purpose, we
follow an approach related to institutions and electronic in-
stitutions [10]. Nevertheless, we extend this idea with new
elements such as mobile agent management and security
management to name a few.

The organization model is rendered as a schema as
shown on Figure 1.

An organization is distinguished by a name (the orga-
nization name compartment). The openness of a system is
given by the keyword open else the system is closed and
the keyword closed is used. An organization contains a set
of roles. These roles represent the agents’ behavior in the
system. To tackle large multiagent systems, we add the car-
dinality for each roles. This piece of information constrains
the number of agents per roles in the system. It prevents
some problems like the lack of resources. For instance, in
auctions, the cardinality is the following one: one and only
one agent of role auctioneer and at least two agents of role
participant.

Entering or leaving multiagent systems implies the ad-
dition of procedures to control the flow of agents. Enter-
ing procedures are defined as protocols, algorithms or free-
format text. Other information can be inserted in this pro-
cedure such as the benefit of this new agent to the sys-



tem. Such verification is performed through utility func-
tions. Examples of such utility functions are in [17]. Only
agents which can improve the utility of the system could en-
ter the system. An example could be: ”All agents that want
to enter in the system have to request their entrance to the
spokesman”.

Leaving procedures are protocols, algorithms or free-
format text. Such an example of leaving procedure is the
following one: “All agents that want to leave the system
have to inform the directory facilitator”. The directory fa-
cilitator agent stores the agent’s address.

Procedures for splitting refer to large scale multiagent
systems. When too many agents have the same role and the
redundancy is too important, it is better to split the organi-
zation into several parts. The splitting procedures compute
when the separation may occur. The procedures are algo-
rithms or free-format text.

Procedures for merging are the counterpart of the split-
ting procedures. They are used to check if some organi-
zations can be united. Merging organizations is meaningful
when several organizations depend frequently on each other
for their tasks and services. It is possible to merge if the
cost associated to the merge minus the cost of redundancy
is less than the cost of dependency between organizations.
Such procedures may use utility functions.

Like human organizations, multiagent system organiza-
tions represent a cost of functioning. This cost is computed
given the number of agents in the system and other param-
eters such as the level of resources.

Large scale multiagent systems need rules to prevent ab-
normal situations or to ban agents behaving improperly rel-
ative to the organization goal. These rules are called norms.
Organizations and especially human organizations are con-
strained by social laws [19]. These social laws are defined
by an authority and social laws are obeyed since they are
agreed upon. The same notion is present in multiagent sys-
tems except that norms deal more with constraining agents’
behaviors [30]. Norms are also seen as a specific means to
fasten the task completion. Norms are particularly present
in electronic institutions [10] and especially in the example
of Fishmarket where auction winners have to pay the price
of the items when requested. Added to norms, there are
penalties which prevent agents not to follow norms. Norms
and penalties can be defined formally or informally. Garcia
et al. [10] choose to represent norms and penalties formally.
An example of norm is the following one: “if an agent gets
an item at auction, it has to pay the requested price”.

Another feature refering to large scale multiagent sys-
tems is constraints on resources. This piece of information
avoids agents consuming all the resources. Some punish-
ment can be associated to this piece of information.

Like human organizations, this organization model de-
fines the language in use within it (the compartment ACL).

It means that agents preferably use this language. However,
it is not a requirement for agents and heterogeneous soci-
eties are possible when ontologies are applied. An ontology
defines the meaning of terms and concepts and describes
the relationships between the elements [11]. Ontologies are
practical to deal with heterogeneous agents. Then, agents
which do not share the same vocabulary can interact each
other if they are able to know how to translate words from
one language to another one. This feature is interesting in a
context of interoperability.

Entering the system, leaving it, or regulating it needs
protocols. These protocols have to be distinguished from
those used by agents and specific to roles. These protocols
are defined through the interaction model (see Section 3.3).

Competition rules and coordination rules refer to depen-
dency relationships between organizations. They are used
to define the general policy of the organization in the con-
text of task advertisement. Once again these rules are re-
lated to utility functions. For instance, if the competition
against another organizations for tasks or services is a good
thing for the organization in term of market share, the orga-
nization applies for this task. If the coordination with other
organizations is better to cut cost off, then the organization
enters in a context of coordination with other organizations.
Of course, if other organizations involved in coordination
refuse this coordination, then the organization can enter in
a context of competition.

Roles within organizations are organized according to re-
lationships. Here are several relationships:

1. unilateral dependency where an organization depends
on the others. This relationship is not reversible. It
means that if A has a dependency over B, B has no
dependency over A. The two way relationship of de-
pendency is the following one.

2. mutual dependency where the dependency is a two
way relationship. If A has a dependency over B, B has
also a dependency over A. It is the case if A needs a
result that B can provide to it but B needs information
that A has.

3. acquaintance corresponds to a relationship where two
organizations know each other. This relationship is
used when organizations are not in a context of coop-
eration or coordination.

4. the relationship of power is essentially used in hier-
archies to represent that an organization higher in the
hierarchy gives order to organizations lower in the hi-
erarchy.

AOR presents other relationships related to organiza-
tional relationships [43].



Human societies contain a common knowledge and ma-
terials to people belonging to them. This notion is also ap-
plied to multiagent systems. The organization knowledge
contains information such as mutual beliefs and intentions
[44]. Knowledge is then provided to all agents in the orga-
nization.

Two pieces of information are provided outside the or-
ganization frame: services and spokesman. We place them
outside to underline that they represent the entry points to
agents outside this organization. Services are the services
performed by this organization. They are defined as a free-
format text. Behind services, there are tasks defined in the
plan model (see Section 3.2). Spokesman is the agent inter-
facing this organization to other agents and organizations.
When an agent wants to enter this organization, it asks this
agent. When an agent or an organization asks for a service,
it asks the spokesman. The spokesman is a specific role
attached to the organization.

We add a new compartment at the bottom of the diagram
to deal with security management. This compartment con-
tains a set of information such as security rules. These rules
can refer to what the system has to do when new agents
come into the system or ask the system. Rules can also con-
cern what the system has to do in case of agent attacks. For
instance, a rule might be if an agent consumes abnormally
all the resources, the system removes it from the system and
shuts all the communication as long as the level of resources
is too low.

3.2. Plan Model

Cognitive or rational agents define plans to fulfil their
goals. These plans are composed of atomic operations
called tasks. We refer to atomic operations to underline that
no further decomposition is possible. A plan is described
as a tree. A plan is not an ordered set of tasks since it is
possible that some tasks are performed in parallel or several
tasks are candidate but only one will be chosen. The plan
model depicts plans as well as tasks as shown on Figure
2. Each plan contains the conditions under which this plan
can be fired and the roles involved. We also add the plan
substitutes in case this one cannot be fired.

The parallelism is rendered as an arc linking all the tasks
as shown on the left bottom of Figure 2. A decision is ren-
dered as a broken line linking all the tasks as shown on the
right bottom of Figure 2. Tasks are ordered from left to
right, from top to bottom. Agents begin by the first tasks
at left. If this task has no further tasks linked to it, agents
continue to the next task and so on.

A task is distinguished by its name. A natural language
description is given in the compartment goal. The com-
partment specification gives a graphical description or an
algorithm of this task. Graphical description can be found

Plan

Conditions

Roles

task name

goal

specification

preconditions

postconditions

acceptance criteria

task substitution

task name

goal

specification

preconditions

postconditions

acceptance criteria

task substitution

task name

goal

specification

preconditions

postconditions

acceptance criteria

task substitution

task name

goal

specification

preconditions

postconditions

acceptance criteria

task substitution

task name

goal

specification

preconditions

postconditions

acceptance criteria

task substitution

task name

goal

specification

preconditions

postconditions

acceptance criteria

task substitution

task name

goal

specification

preconditions

postconditions

acceptance criteria

task substitution

Figure 2. Plan Model Schema

in PASSI [4]. The preconditions and postconditions define
the conditions to be satisfied before and after the execution
of the task. The acceptance criteria presents the set of ac-
ceptable solutions for the task. The last piece of information
task substitution refers to the ability for agents to schedule
another task if this task is not possible or will not be done. It
is for instance the case when agents responsible for this task
are on handheld devices and these ones are not accessible.

3.3. Interaction Model

Interaction is a key component in multiagent systems
which allows agents to exchange information, cooperate
and coordinate in order to complete their tasks. One usual
method for representing interaction is a protocol. An agent
interaction protocol is a set of rules that guide the interac-
tion among several agents. For a given state of the protocol
only a finite set of messages may be sent or received. If one
agent is to use a given protocol, it must agree to conform
to such a protocol and obey the various rules. Moreover, it
must comply with its semantics. A thorough definition of
interaction protocols can be found in [18].

The interaction model deals with the interaction between
agents through protocols. The interaction model is decom-
posed in two parts: a textual part and a graphical part. The
textual part corresponds to a requirement document for the
protocol. The graphical part depicts the sequence of mes-
sages between agents or roles.

Our proposal of document is composed of several fields:
protocol name, keywords, agents’ roles, initiator, prereq-
uisite, function, behavior, constraints, termination, security
and mobility.

The field Protocol’s name gives the name of the proto-



col. The field Keywords gives a list of keywords to char-
acterize the protocol. The choice of keywords is free but it
seems more interesting to provide accurate and meaningful
keywords. Keywords could refer to

� the number of agents involved in the protocols,

� the kind of message sending: broadcast, multicast,

� the class of protocols: information request, negotia-
tion, synchronization,

� the agent communication language used: ACL,
KQML,

� the ontology used,

� the specific features: security, anonymity, fault-
tolerance, electronic commerce

This list of keywords’ domain is not exhaustive and de-
pends on the purpose of the protocol.

The field Agents’ roles refers to the agents involved in
the protocol. It also gives the number of agents per role.

The field Initiator is related to the previous one. The
initiator of an interaction is an agent playing a specific role.
For instance, for auction protocols, the initiator is the seller.
The initiator must be a role defined in the field Agents’ roles.

The field Prerequisite defines the conditions to be sat-
isfied before executing protocols. These conditions can be
written as a free-format text or as a formal description. A
possible formal description language is OCL [38] also em-
ployed for UML and especially for Agent UML sequence
diagrams. The domain for the prerequisite usually depends
of the interaction protocol context. For instance, if the in-
teraction protocol deals with information request, the agent
requesting must have been first identified by the agent hav-
ing the information.

The field Function is used during reuse. This field gives
a summary of the definition of the protocol. It seems to be
interesting for designers in a context of reuse not to have to
read the complete definition of the protocol to understand
its purpose. The complete definition of the protocol is given
in the field Behavior.

The field Behavior is the main field in the analysis doc-
ument. It gives the complete definition of the protocol. Un-
like communication protocol engineering where the execu-
tion paths are separated from message and data types, we
put together these two pieces of information. We think it is
better for designers to be able to refer to message type when
they consider a path of the interaction. The requirement
analysis document should also contain information which is
related to agents and multiagent systems such as beliefs, de-
sires and intentions (BDI) [41], actions or knowledge. Ac-
tually, sending or receiving messages can modify agents’

behaviors. For instance, if we refer to FIPA ACL specifi-
cations [15], it is written that if an agent receives an inform
message, it means that the sender believes the proposition
and, the sender intends the receiver to believe this propo-
sition. Moreover, when agents receive a cfp message, they
have to verify if they are able to do the task. Thus, they have
to do some actions.

The field Constraints allows designers to describe the
good properties to be present in protocols and the bad prop-
erties to avoid. Good properties and bad properties refer to
properties that designers want to check during the valida-
tion stage [20]. It might be deadlock freeness, termination,
absence of acceptance cycles, absence of non-progressing
states, mutual exclusion, etc. Constraints can be defined as
a temporal logic formula. Thus, it is easier to check the
properties with model checker such as SPIN [21]. This field
can also contain the standards that protocols have to con-
form to. For instance, standards could be for instance the
use of ACL for communicative acts or XML for message
format.

The field Termination defines the valid termination of
protocols. This field is related to the purpose of protocols.
For instance, for a secure auction protocol, the seller has
got the money but no longer the good; and the buyer has
got the good but no longer the money. This field can be
described through a free-format text or temporal logic for-
mulae. Then, these formulae can be used in model checker
for the validation.

The field Security gives the security requirements for
this protocol. It could be that messages are encrypted.
Other security requirements could be that agents are authen-
ticated, or interactions are anonymous.

The field Mobility refers to mobility requirements. Such
examples of mobility requirements are fault-tolerant inter-
actions or message acknowledgement. Fault-tolerant inter-
action requirement deals with a more reliable media for
message exchanges. It is particularly interesting when
agents are on handheld devices or mobile appliances. Mes-
sage acknowledgements correspond to the hand-shaking
protocol in distributed systems. As long as agents do not
acknowledge message receipt, the message is sent to the re-
ceivers.

The graphical part of the interaction model gives the se-
quence of messages between agents or roles. This graphical
part presents some redundancy with the behavior field in the
requirement analysis document but it is sometimes easier to
read a diagram than to read a natural language description.
We use the Agent UML sequence diagrams to this purpose
[37] [1] as shown on Figure 3. We add couple of new ele-
ments for these sequence diagrams in [23].



inform(start auction)1 n

cfp(initial price)1 n

n

m

k

reject−proposal(price)

k

n

1

inform(end auction)

{actual price>=reserved price}
request(price)

1

1

1

1

1 {k >= 2} cfp(new price)

accept−proposal(price)

ParticipantAuctioneer

{d < t units}

1

k−1

propose(price)

not−understood(syntax error)

not−understood(ontology}

Figure 3. Agent UML Sequence Diagram for
English Auction Protocol

continuous

discrete

shape

agents resources

rules

Figure 4. Environment Model Schema

3.4. Environment Model

Most of time, agents are included in a real or a virtual en-
vironment: the Internet, a computer, etc. The environment
model describes the environment. The environment model
needs to represent agents and resources. Such an example
of environment model is in ROADMAP [27]. It does not
cover the three dimensions of an environment but only the
different elements in it.

The environment model is described as a schema as
shown on Figure 4.

The environment model is composed of a shape. The
shape is a free-format text describing the structure of the en-
vironment or a formula if the environment can be defined as
a mathematical formula. An environment is discrete if there
are a finite number of positions in it else the environment is
continuous. The environment model describes the agents
and the resources present in the environment. Agents are

defined by their coordinates in the environment. Resources
are also defined by their coordinates and the type and the
number of resources are given. The rules deals with the con-
sumption and the production of resources. This information
is particularly important when the multiagent system is used
for simulation like the Fishmarket project [34]. In this case,
the resources are fish which appear and disappear.

The benefit of an environment model is when multiagent
systems are applied to simulation and if agents are reactive
agents.

3.5. Role Model

Agents within multiagent systems play specific roles.
These roles correspond to their behaviors in this multia-
gent system. For instance, in auctions, there are usually
two roles: auctioneer and participant. The role of auction-
eer tries to sell items at the highest price possible. The role
of participant bids for items and tries to buy items at the
lowest price possible.

When security is at stake, it is important to define per-
missions and authorizations to agents according to their
roles. Moreover, two roles can have two different levels
of permissions. One role can access some specific pieces
of knowledge and not the others. The notion of groups of
roles is defined in Nemo and is based on Role-Based Access
Control (RBAC) [13]. An application of RBAC to UML is
in SecureUML [29]. The idea is the following one. Agents
described through their roles are gathered into groups. Per-
missions and authorizations are associated to groups. These
permissions and authorizations concern knowledge, actions
or resources. For instance, if the piece of knowledge salary
is only accessible to the group management, an agent must
belong to this group to access it. The permissions on knowl-
edge are read, write and confidential. The latter is more
constraining than the first one, agents can read the piece of
knowledge but are not allowed to pass it to other agents.
Sub-groups into groups are possible. It is usually used to
restrict access more or to define particular policies for a sub-
group.

Group of roles, roles, the relationships between roles and
permissions are given in the role model as shown on Figure
5.

A role is distinguished by its name. The role model also
presents a natural-language description of the role, the ca-
pabilities and knowledge.

The capabilities compartment deals with the tasks the
role is able to perform. This information is important in a
context of open multiagent systems. New agents could be
judged on the capabilities of their role. Knowledge depicts
knowledge as well as the beliefs associated to this role.



group

permissions

authorizations

role name

description

capabilities

permissions

obligations

knowledge, beliefs

role name

description

capabilities

permissions

obligations

knowledge, beliefs

role name

description

capabilities

permissions

obligations

knowledge, beliefs

Figure 5. Role Model Schema

3.6. Agent Model

Agents are the active entities in multiagent systems.
Agents are complex to design since they contain perception,
interaction, decision and knowledge. The Agent model pro-
posed corresponds to the Agent UML class diagram pro-
posal in [22].

The agent model is shown on Figure 6.
In comparison with the proposal in [22], we add some

elements about mobility and security. Mobile agents have
a different stereotype <<mobile agent>> instead of
<<agent>>. Two elements for security are provided.
First, the group of this agent is written before the name of
the agent. Agent groups define the level of permissions and
authorizations on knowledge, actions and resources (see
Section 3.5). The second element of security is data pri-
vacy. It is possible to restrict the data access to a specific
group of agents.

3.7. Knowledge Model

Knowledge is one of the main difference between agents
and objects. Rational agents have beliefs, desires and in-
tentions. Cognitive agents and rational agents have a model
of their environment and of other agents. The knowledge
model is similar to the one proposed in [7] except that we
add the notion of permissions. It is then possible to restrict
the access to a piece of knowledge to a group of agents.
Moreover, knowledge can be restricted to read access, write
access and confidentiality access. In the last case, agents
can read but cannot reveal this piece of knowledge to other
agents. Knowledge is rendered as a set of objects connected
by relationships. Objects refer to UML objects as they are

bel1: Believe

variable = "b"
value = 10

service1

service2

servicen

<<agent>>

Role
role1, role2, ..., rolen

Attribute

attribute1
attribute2
...
attributen

Operation
[pre−cond] operation1 [post−cond]

[pre−cond] operation2 [post−cond]
...
[pre−cond] operationn [post−cond]

Capability
capability1
capability2
...
capabilityn

...
perception2

perceptionn

perception1

protocol1 : role
protocol2 : role
...
protocoln : role

Protocol

...

Organization

Perception

[conditions]

[conditions]

[conditions]

[constraints] organization1 : role

[constraints] organizationn : role

group:name

Figure 6. Agent Model Schema

defined in object diagrams [2]. An object in UML is an in-
stance of a class with well defined boundary. This approach
allows designers to represent concrete data within agents.
For instance, it is difficult to represent a belief such as be-
lieve(Melbourne sunny) directly within agent class particu-
larly if we need to modify it after. As a consequence, it is
easier to handle this information. When considering a goal,
it is then possible to retrieve a part of the goal or to modify
it. As far as we are concerned this approach brings flexi-
bility to the management of BDI information. Moreover, it
helps designers in the context of mutual beliefs and joint in-
tentions [44], since it is easier to share beliefs or intentions
if they are defined outside agents.

3.8. Deployment Model

The deployment model describes how entities involved
in the multiagent systems are deployed on the network. This
network can be a personal computer, a local area network
or a wide area network such as the Internet. The deploy-
ment model is based on the UML deployment diagram [2].
Nevertheless, we are obliged to extend these deployment
diagrams since they do not take into account the agent mo-
bility. Some new stereotypes are added: <<move>> which
means that an agent (or role) can move from one system to
another one, <<clone>> which means that agents clone
before leaving the current site and <<change>> which
means that agents change roles when arriving at destination.
They are placed on the dependencies. When the stereotype
<<change>> is used, the new role is given after.



4. Lack of Related Work

As stated in introduction, several agent-oriented soft-
ware engineering methodologies are on the shelf but as far
as we know, no methodologies are considering mobility,
security and open large scale multiagent systems together.
The only work where mobility is considered is in [42] but
it fails on the security management and in our opinion, mo-
bility for multiagent systems cannot be considered without
security.

Our main disadvantage in comparison with some other
methodologies is that implementation is not considered. It
is for instance the case in the PASSI methodology [4] and
in the MaSE methodology [8]. Moreover, no tools are pro-
vided for the Nemo methodology.

Nevertheless, the Nemo methodology presents several
advantages in comparison with other methodologies. For
instance, the PASSI methodology [4] considers neither an
environment model nor a knowledge model. Moreover, the
agent definition is too close to UML class diagrams. As
a consequence, it does not represent the richness and the
complexity of agents.

The Tropos methodology [33] presents few models and
is oriented to goal representation. Thus, it is not possible to
represent organization, knowledge or environment.

Our final comparison is with the Gaia methodology [46].
In our opinion, this methodology is too abstract and does
not present the richness of agents and multiagent systems.
There is no model for organizations, for plans or for knowl-
edge. The main advantage of Gaia is to address more accu-
rately the notion of BDI systems and the formalization.

5. Conclusion and Future Work

Agent-oriented software engineering methodologies are
a buzzword in agent theory and design. Several new
methodologies emerged recently to tackle agent notions
not provided by object-oriented methodologies. The new
methodology Nemo has been presented in this paper. The
particular aim of this methodology and its force is to ad-
dress the problem of mobility, of security and of open large
scale multiagent systems. These notions are barely present
in current methodologies. The Nemo methodology focuses
on the analysis and design stages. It is composed of eight
models. The main model is the organization one. It presents
some new ideas to tackle mobility, security and large scale
multiagent systems.

The Nemo methodology is an ongoing research program
as a consequence, several models have to be refined. Par-
ticularly, security has to be intertwined more deeply within
models. We have already noticed several directions of work.
The first one is to improve the reuse of models through

projects. Nemo needs to allow designers to define tem-
plates.

The Nemo methodology contains eight models. It is a
large number of models so it is important that designers
have some help during design. We mean that when design-
ers modify a model, they have to be informed what is the
effect on other models. For instance, if designers reduce the
responsibilities of a specific role due to security reason, it
affects the role model as well as the plan model.

Obviously, designers need tools to help them. Finally, a
particular effort has to be done on concrete examples. Con-
crete examples allow us to find flaws in the models and to
advertise the methodology.
Acknowledgements. This research was supported by the
UK government under EPSRC project GR/R27518 (Verifi-
able Languages and Protocols for Multiagent Systems).

References

[1] B. Bauer, J. P. Müller, and J. Odell. An extension of UML by
protocols for multiagent interaction. In International Con-
ference on MultiAgent Systems (ICMAS’00), pages 207–214,
Boston, Massachussetts, july, 10-12 2000.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, Reading,
Massachusetts, USA, 1999.

[3] F. Brazier, B. Dunin-Keplicz, N. R. Jennings, and J. Treur.
Formal specification of multi-agent systems: a real-world
case. In V. Lesser, editor, Proceedings of the First Inter-
national Conference on Multi–Agent Systems, pages 25–32,
San Francisco, CA, 1995. MIT Press.

[4] P. Burrafato and M. Cossentino. Designing a multi-
agent solution for a bookstore with the PASSI methodol-
ogy. In Fourth International Bi-Conference Workshop on
Agent-Oriented Information Systems (AOIS-2002), Toronto,
Canada, May 2002.

[5] C. Caire, F. Garijo, J. Gomez, J. Pavon, F. Leal, P. Chainho,
P. Kearney, J. Stark, R. Evans, and P. Massonet. Agent ori-
ented analysis using MESSAGE/UML. In Proceedings of
Agent-Oriented Software Engineering (AOSE 01), Montreal,
Canada, May 2001.

[6] A. Collinot and A. Drogoul. Using the Cassiopeia method
to design a soccer robot team. Applied Articial Intelligence
(AAI) Journal, 12(2–3):127–147, 1998.

[7] S. Cranefield. Networked knowledge representation and ex-
change using UML and RDF. Journal of Digital Informa-
tion, 1(8), 2001.

[8] S. A. DeLoach. Multiagent systems engineering: a method-
ology and language for designing agent systems. In
Proceedings of Agent Oriented Information Systems ’99
(AOIS’99), pages 45–57, Seattle, USA, May 1999.

[9] Y. Demazeau. VOYELLES. Habilitation diriger les
recherches, Institut National Polytechnique de Grenoble,
Grenoble, avril 2001.

[10] M. Esteva, J. A. Rodriguez, C. Sierra, P. Garcia, and J. L. Ar-
cos. On the formal specifications of electronic institutions,



pages 126–147. Number 1991 in Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2001.

[11] D. Fensel. Ontologies: Silver Bullet for Knowledge Man-
agement and Electronic Commerce. Springer-Verlag, 2001.

[12] J. Ferber and O. Gutknecht. A meta-model for the anal-
ysis and design of organizations in multi-agent systems. In
Proceedings of the Third International Conference on Multi-
Agent Systems (ICMAS’98), pages 128–135. IEEE Com-
puter Society, 1998.

[13] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chan-
dramouli. Proposed NIST standard for role-based access
control. ACM Transactions on Information and System Se-
curity (TISSEC), 4(3):224–274, 2001.

[14] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML
as an agent communication language. In Third Interna-
tional Conference on Information and Knowledge Manage-
ment (CIKM-94). ACM Press, 1994.

[15] FIPA. Specification. Foundation for Intelligent Phys-
ical Agents, http://www.fipa.org/repository/fipa2000.html,
2000.

[16] M. S. Fox. An organizational view of distributed systems.
IEEE Trans. on System, Man, and Cybernetics, 11(1):70–80,
January 1981.

[17] N. Glaser. Conceptual Modelling of Multi-Agent Sys-
tems The CoMoMAS Engineering Environment, volume 4.
Kluwer Academic Press, 2002.

[18] M. Greaves, H. Holmback, and J. Bradshaw. What is a con-
versation policy? In Autonomous Agents’99 Special Work-
shop on Conversation Policies, 1999.

[19] J. Habermas. The Theory of Communicative Action, volume
1 Reason and the Rationalization of Society. Beacon Press,
Boston, 1984. transl. Mc Carthy Theorie des Kommunika-
tiven Handels.

[20] G. J. Holzmann. Design and Validation of Computer Proto-
cols. Prentice-Hall, 1991.

[21] G. J. Holzmann. The model checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5), May 1997.

[22] M.-P. Huget. Agent UML class diagrams revisited. In
B. Bauer, K. Fischer, J. Muller, and B. Rumpe, editors,
Proceedings of Agent Technology and Software Engineering
(AgeS), Erfurt, Germany, October 2002.

[23] M.-P. Huget. Extending Agent UML protocol diagrams.
In F. Giunchiglia, J. Odell, and G. Weiss, editors, AAMAS
Workshop on Agent-Oriented Software Engineering (AOSE),
Bologna, Italy, July 2002.

[24] C. Iglesias, M. Garrijo, J. Gonzales, and J. Velasco. De-
sign of multi-agent system using MAS-CommonKADS. In
Springer-Verlag, editor, Proceedings of ATAL 98, Workshop
on Agent Theories, Architectures, and Languages, volume
LNAI 1555, pages 163–176, Paris, France, July 1998.

[25] C. A. Iglesias, M. Garijo, and J. C. Gonzalez. A survey of
agent-oriented methodologies. 1999.

[26] T. Juan, A. Pearce, and L. Sterling. Extending the Gaia
methodology for complex open systems. In Proceedings of
Autonomous Agents and Multi-Agent Systems (AAMAS 02),
Bologna, Italy, July 2002. ACM Press.

[27] T. Juan, L. Sterling, and M. Winikoff. Assembling agent ori-
ented software engineering methodologies from features. In
F. Giunchiglia, J. Odell, and G. Weiss, editors, Proceedings

of Third International Workshop on Agent-Oriented Soft-
ware Engineering (AOSE-2002), Bologna, Italy, July 2002.

[28] J. Lind. Iterative Software Engineering for Multiagent Sys-
tems - The MASSIVE Method. Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2001.

[29] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A
UML-based modeling language for model-driven security.
In Proceedings of the Fifth International Conference on Uni-
fied Modeling Language (UML 2002), Dresden, Germany,
October 2002.

[30] A. Mali. Social laws for agent modeling. In M. Tambe and
P. Gmytrasiewicz, editors, Agent Modeling Papers from the
AAAI Workshop, pages 53–60. AAAI Press, 1996.

[31] J. Martin and J. Odell. Object Oriented Analysis and Design.
Prentice-Hall, 1992.

[32] J. Müller, B. Bauer, and M. Berger. Software agents for
electronic business: Opportunities and challenges. In V. M.
et al., editor, Proceedings of MASA 2001, number 2322 in
LNAI, pages 61–106. Springer, 2001.

[33] J. Mylopoulos, M. Kolp, and J. Castro. UML for agent-
oriented software development: the tropos proposal. In Pro-
ceedings of the Fourth International Conference on the Uni-
fied Modeling Language (UML 2001), Toronto, Canada, Oc-
tober 2001.

[34] P. Noriega. Agent mediated auctions: The Fishmarket
Metaphor. PhD thesis, Universitat Autnoma de Barcelona,
1998.

[35] J. Odell. Agents and complex systems. Journal of Object
Technology, 1(2), July-August 2002.

[36] J. Odell. Objects and agents compared. Journal of Object
Computing, 1(1), May 2002.

[37] J. Odell, H. V. D. Parunak, and B. Bauer. Representing
agent interaction protocols in UML. In P. Ciancarini and
M. Wooldridge, editors, Proceedings of First International
Workshop on Agent-Oriented Software Engineering, Limer-
ick, Ireland, june, 10 2000. Springer-Verlag.

[38] OMG. UML 1.4. Technical report, OMG, 2001.
[39] L. Padgham and M. Winikoff. Prometheus: a methodology

for developing intelligent agents. In F. Giunchiglia, J. Odell,
and G. Weiss, editors, AAMAS Workshop on Agent-Oriented
Software Engineering (AOSE), Bologna, Italy, July 2002.

[40] H. V. D. Parunak and J. Odell. Representing social struc-
tures in UML. In M. Wooldridge, G. Weiss, and P. Cian-
carini, editors, Second International Workshop on Agent-
Oriented Software Engineering (AOSE-2001), LNCS, Mon-
treal, Canada, May 2001. Springer-Verlag.

[41] A. Rao and M. Georgeff. Modeling rational agents within
a BDI architecture. In R. Fikes and E. Sandewall, edi-
tors, Proceedings of Knowledge Representation and Reason-
ing (KR&R 91), pages 473–484, San Mateo, 1991. Morgan
Kaufmann Publishers.

[42] A. Shelf. Design and specification of dynamic, mo-
bile and reconfigurable multiagent systems. Master’s the-
sis, Graduate School of Engineering and Management
of the Air Force Institute of Technology, March 2001.
AFIT/GCS/ENG/01M-11.

[43] G. Wagner. The agent-object-relationship metamodel: To-
wards a unified conceptual view of state and behavior. In-
formation Systems, 2002. to appear.



[44] M. Wooldridge. Reasoning about Rational Agents. MIT
Press, 2000.

[45] M. Wooldridge. An Introduction to Multiagent Systems.
John Wiley and Sons, April 2002.

[46] M. Wooldridge, N. R. Jennings, and D. Kinny. The
Gaia methodology for agent-oriented analysis and design.
Journal of Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.


